
1 / 4

Augmentiqs integration with 3rd party algorithms (v.2.3)

The purpose of this document is to outline tool functionality as well as steps for integration with

responsibilities of the parties.

Augmentiqs software suite overview
Augmentiqs consists of hardware optical module that is installed in the microscope and a software client that

runs on dedicated PC connected to the optical module via USB interface.

Optical module contains various devices (multiple cameras, controllers as well as projection system), that are

controlled by the software application.

Augmentiqs application provides core functionality such as morphometrics analysis (selection and

measurement via rectangle, ellipse, polygonal shapes that user may freely define), telepathology and more.

Beside that functionality, Augmentiqs application interacts with 3rd party plugins via standard interface in order

to extend its functionality and provide solution for specific diagnostic needs.

The main idea of the interface is that any image processing algorithm, be it classical or ML-based, needs to

obtain raster image with some additional metadata that can be conveniently encoded in JSON format. The

output of the algorithm may vary, but ultimately can be presented as a whole image overlay in raster format as

well as textual vector data that may encode some regions needed to be highlighted, statistical data etc. The

flexibility of JSON format enables to encode any sort of data and exact format of JSON structure needs to be

negotiated per each plugin separately.

Augmentiqs software takes responsibility to obtain input from the user via its UI, pass the input along with

capture still image from the main camera to the 3rd party algorithm, wait till its processing is complete and

present the output to the user. Consider the supported flow below:

1. User is shown an unmodified image of the tissue

2. User selects specific 3rd party tool via dedicated button

3. OPTIONAL: User picks desired color for future segments (if applicable)

4. OPTIONAL: User moves mouse to outline ROI over the desired tissue segments

or provide additional paths via standard morphometrics tooling

5. 3rd party tool analyzes the tissue samples under the ROI/path and gives out some output in form of

raster/vector data (e.g. full image overlay and/or highlighted segments of the image colored by

previously selected color)

6. OPTIONAL: The cycle may repeat (additively) while user may pick more colors/paths

2 / 4

The diagram below shows a typical integration topology with the 3rd party algorithm provided as a dynamically

linked library.

In case this is not possible, and 3rd party solution is a separate process, which may even work on the remote

host or different OS, a standard solution for IPC is present, which is based on widely popular gRPC protocol

from Google. It is based on HTTP/2 protocol which is fast and secure, while serialization and marshalling is

done via Google Protocol Buffers (protobuf) library. There is a plethora of gRPC clients available for any

platforms and languages.

Consider variants below:

Variant 1: gRPC server developed natively and integrated inside 3rd party solution

Variant 2: gRPC is a thin standalone process that is developed externally

Open API

C++ extern

call

Augmentiqs application

3rd party plugin wrapper

(provided by Augmentiqs)
Processing logic

UI

3rd party algorithm

(library)

Open API

C++ extern

call

3rd party application

(process) Open API .proto

contract-based

communication over

TCP
gRPC server

Augmentiqs application

3rd party plugin wrapper

acting as gRPC client

(provided by Augmentiqs)

3rd party algorithm

(library) Open API .proto

contract-based

communication over

HTTP/2

gRPC server

(standalone

process)

Augmentiqs application

3rd party plugin wrapper

acting as gRPC client

(provided by Augmentiqs)

3 / 4

Open API interface

C++ extern call signature:

 #define EXPORT_API __declspec(dllexport)

extern "C" int EXPORT_API __stdcall GetProcessedResult(char* inputImage,
 int imageWidth,
 int imageHeight,
 const wchar_t* inputMeta,
 char* outputImage,
 char* outputMeta);

P/Invoke call signature:

[DllImport("<plugin>.dll", CallingConvention = CallingConvention.StdCall, CharSet = CharSet.Unicode)]
private static extern int GetProcessedResult([In] byte[] inputImage,
 [In] int imageWidth,
 [In] int imageHeight,
 [In] string inputMeta,
 [Out] byte[] outputImage,
 [Out] byte[] outputMeta);

where:

inputImage – PNG-encoded bitmap serialized to byte array
imageWidth – input and output image width in pixels
imageHeight – input and output image height in pixels
inputMeta – JSON-encoded string with number of additional parameters
outputImage – PNG-encoded bitmap serialized to byte array (transparent background with colored
mask of segmentation areas)
outputMeta – JSON-encoded string with output data, or alternatively any type of encoded
information passed in unstructured byte array
return value is typically used for error codes, where 0 means OK and non-zero values meaning varies
per publisher/plugin

 inputMeta JSON format (just an example, real format should be negotiated between the parties):
{

 "Mag": "4",

 "PixelSize": 1.23456789,

 "Paths": [

 {

 "Points": [

 "96, 563",

 "29, 542",

 ...

],

 "Color": "#FF00A2E8"

 },

]

}

where:

 Mag – current magnification factor

 PixelSize – input image pixel size (in microns)

Paths – array of Path structure

Path structure contains the following fields:

Points – array of mouse selection path points (pixels X, Y coordinates inside input image, origin is

top-left)

Color -- selection path color (in web format aka: #AARRGGBB)

4 / 4

gRPC contract

syntax = "proto3";

option csharp_namespace = "AugmentIQs";

package plugin;

// The plugin interop service definition.
service PluginInterop {
 // Sends a plugin request
 rpc GetProcessedResult (PluginRequest) returns (PluginResponse);
}

// The request message containing the necessary image data and metadata.
message PluginRequest {
 bytes input_image = 1;
 sint32 image_width = 2;
 sint32 image_height = 3;
 string input_meta = 4;
}

// The response message containing the return code, output image and metadata.
message PluginResponse {
 sint32 return_code = 1;
 bytes output_image = 2;
 string output_meta = 3;
}

The definition of this contract is straightforward and repeats the definition of aforementioned extern C++ call.

For obtaining GRPC interop sample code (C++ & C#) please address Augmentiqs support.

